If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-80y+1000=0
a = 1; b = -80; c = +1000;
Δ = b2-4ac
Δ = -802-4·1·1000
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{6}}{2*1}=\frac{80-20\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{6}}{2*1}=\frac{80+20\sqrt{6}}{2} $
| 3(500d-120)=5000 | | z/3+16=20 | | 2x2+x−4=0. | | 5x+22+7x-14=180 | | -5z-3z=4z+5+3z | | -w-4=0 | | -6-4x=2(3-2x) | | 14=r/3+11 | | 3x+4×=70,7 | | 4(2x+9)=-39+19 | | 5x10x=-9 | | 120+6m=150+4m | | -4=u2− 7 | | 7-4x=2(3-2x) | | 3x+5=2x7 | | x-4x=2(3-2x) | | 4u+8=15u-3+64 | | 6(255d-50)=8000 | | y/4-15=14 | | 4(x-3)^2-17=0 | | 0.01+x=12.01 | | 4(x-5)^2-3=61 | | Y=(1100)(x)^-0.2515 | | 13z-7z=12 | | 25-2x=47 | | 12x–3(5+4x)=7x+20 | | 5/8x=1/16 | | 7x-2(x-3)=5(x+1)+3 | | 2−7y=9−6y | | 2/5x+1/4=26 | | 4-1+6x=39 | | (b/9)-6=-4 |